The impact of using artificial intelligence tools in predicting consumer behaviour -A quasi-experimental study within the framework of the technology acceptance model

Document Type : Original Article

Author

faculty of media and mass communication, Misr for science technology university

Abstract

The study seeks to determine the impact of using various tools for artificial intelligence to predict consumer behavior and to identify the role of artificial intelligence, which plays a decisive role in improving the relationship of companies with consumers, enhancing their operational performance, and achieving better results, through experimental application on an experimental group consisting of 40 respondents, and analytical analysis of several artificial intelligence tools, during the period from 10/24/2023 until 11/14/2023. The study found that there is a correlation between the prediction rate of consumer behavior when using artificial intelligence tools and the elements of the technology acceptance model and that there is a moderate (positive) correlation between predicting consumer behavior when using artificial intelligence tools and the elements of the technology acceptance model, There are no statistically significant differences between the two study groups (males, females) before using artificial intelligence tools, and we conclude from this that there is an agreement between genders regarding before using artificial intelligence tools, There are statistically significant differences between the two categories of the study (males, females) regarding the ease of using artificial intelligence tools after using them. We conclude from this that there is a difference between the two categories of the study (males, and females) regarding the ease of using artificial intelligence tools after using them.

Keywords

Main Subjects


- Jenifer Angelen S & M. Mohamed Siddik. (2023). Role of Artificial Intelligence (AI) in Marketing. Journal of Survey in Fisheries Sciences. 10(3S). 6540-6549
[1] Prakash; S. Malli Babu et al. (2023). Predicting Consumer Behaviour with Artificial Intelligence. IEEE 5th International Conference on Cybernetics. Cognition and Machine Learning Applications (ICCCMLA). 07-08 October. Hamburg. Germany
-Emmara, W. (2023). dawr mumarasat altaswiq bialdhaka' alaistinaeii fi taeziz alqimat almudrikat wawala' aleumala'i. dirasat tatbiqiat ealaa eumala' matajir altajziat al'iiliktrunia ('amazun) bimasr. majalat albuhuth almaliat waltijariati- 2(2). 560- 597.
[1] Gkikas, D., Theodoridis, P. (2022). AI in Consumer Behavior. In: Virvou, M., Tsihrintzis, G.A., Tsoukalas, L.H., Jain, L.C. (eds) Advances in Artificial Intelligence-based Technologies. Learning and Analytics in Intelligent Systems, vol 22. Springer, Cham. In: https://doi.org/10.1007/978-3-030-80571-5_10  
[1] Marcello M. Mariani, Rodrigo Perez‐Vega & Jochen Wirtz. (2021). AI in marketing, consumer research and psychology: A systematic literature review and research agenda. Psychology & Marketing. Vol. 39. published by Wiley Periodicals LLC. pp755–776
-Hajjaj, I. (2021). 'athar aistikhdam wasayil aldhaka' alaistinaeii ealaa tatwir altaswiq alraqmaa (dirasat tatbiqiati). almajalat aleilmiat lildirasat altijariat walbiyiyati. 4(1). 386- 427.
[1] Schrotenboer.D.W. (2021). The Impact of Artificial Intelligence along the Customer Journey: A Systematic Literature Review. 
[1] Siti Zulaikha, Hazik Mohamed, Masmira Kurniawati, Sulistya Rusgianto and Sylva Alif Rusmita. (2020). Customer Predictive Analytics Using AI. The Singapore Economic Review. 1–12. In: https://doi.org/10.1142/S0217590820480021
_Abd alrahim , N. (2021). aldawr alwasit liltawajuh nahw altaqniaat alhadithat fi alealaqat bayn aistikhdam aldhaka' alaistinaeii walaibtikar altaswiqi- dirasatan tatbiqiatan ealaa qitae matajir altajziat al'iiliktruniat fi Masr. majalat albuhuth almaliat waltijariati. 22(3).
[1] Mussa. Mona H. (2020). The impact of Artificial Intelligence on Consumer Behaviours - An Applied Study on the Online Retailing Sector in Egypt. Scientific Journal for Economic& Commerce. Vol. 50. No. 4. Pp. 293- 318
[1] Kenza Bayoude. Youssef Ouassit. Soufiane Ardchir. Mohamed Azouazi. (2018). How Machine Learning Potentials are transforming the Practice of Digital Marketing: State of the Art. Periodicals of Engineering and Natural Sciences. Vol. 6. No. 2. December, Pp.373-379 https://qspace.qu.edu.qa/handle/10576/50548
-Awadin, F. (2022), aistikhdamat tiqniaat aldhaka' alaistinaeii bayn almashrueiat waeadam almashrueiat -aljuz' al'awala- mahiat aldhaka' alaistinaeii wamajalat aistikhdamatih al'amniati. almajalat aljinayiyat alqawmiata. 1(3).
Abd alraaziq, M. (2022). tiqniaat aldhaka' alaistinaeii fi al'iielam - alwaqie waltatawurat almustaqbaliati- dirasat tatbiqiat ealaa alqayimin bialaitisal bialwasiil al'iielamiat almisriat walearabiati. almajalat almisriat libuhuth alaelami. 81(3).
- Altuwkhi, M. (2021). tiqniaat aldhaka' aliaistinaeii walmakhatir altiknulujiatu, alqiadat aleamat lishurtat alshaariqat - markaz buhuth alshurta. 116(3).
[1] Laura Abrardi. Carlo Cambini & Laura Rondi. (2021). Artificial intelligence, firms and consumer behavior: A survey. Journal of Economic Surveys. published by John Wiley & Sons Ltd. 1-23
- Alnajar, M. (2020). dirasat 'athar aistikhdam tiqniaat aldhaka' alaistinaeii walbayanat alkabirat ealaa faeaaliat alqararat al'iidariat bialtatbiq ealaa sharikat alaitisalat fi muhafazat dimashqa. risalat majistir manshura. (aljamieat Alaiftiradiat Alsuwriata, kuliyat 'iidarat alaemali).
[1] Tanya Tiwari. Tanuj Tiwari. Sanjay Tiwari. (2018). How Artificial Intelligence, Machine Learning and Deep Learning are Radically Different?. International Journal of Advanced Research in Computer Science and Software Engineering. Vol.8. No. 2
- Qammoura, L. (2018). aldhaka' alaistinaeiu bayn alwaqie walmamul dirasat tiqniat wamaydaniatu, almultaqaa alduwalii "aldhaka' alaistinaeii: tahudin jadid lilqanun?. Aljazayar, nufimbir.
[1] K. Hao. (2018). What is AI? We Drew You a Flowchart to Work it Out, in https://www.tec hnologyreview.com/2018/11/10/139137/is-this-ai-we-drew-you-a-flowchart-to-work-it-out
[1] B.J. Copeland. (2020). Artificial Intelligence, in: https://www.britannica.com/technology/artifi cial-intelligence
[1] Paliouras Georgios. Kakaletsis Vangelis. (2001). Machine learning and its application. Springer. pp 295-299,
[1] Thiraviyam, T. (2018). Artificial intelligence Marketing.in: https://www.researchgate.net/publication/328580914_Artificial_intelligence_Marketing,2018  
[1] Erevelles, S. Fukawa, N. & Swayne, L. (2016). Big data consumer analytics and the transformation of marketing. Journal of Business Research, Vol. 69. No. 2. Pp. 897–904
[1] Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology. Vol. 14. No. 5. Pp. 91–118
[1] Shankar, V. (2018). How artificial intelligence (AI) is reshaping retailing. Journal of Retailing. Vol. 94. No. 4. Pp. 6-11
[1] Syam, N. & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management. Vol. 69. Pp. 135–146.
[1] Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research. Vol. 21. No. 2. Pp. 155–172
[1] Berry, M. J., & Linoff, G. S. (2004). Data mining techniques: For marketing, sales, and customer relationship management. The United States of America. Wiley Publishing, Inc. 2nd edition.
[1] Rygielski, C., Wang, J. C., & Yen, D. C. (2002). Data mining techniques for customer relationship management. Technology in society. Vol. 24. No. 4. Pp. 483–502.
[1] Law, R., & Au, N. (1999). A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Managemen. Vol. 20. No. 1. Pp. 89–97
[1] Hauser, J. R. (2014). Consideration‐set heuristics. Journal of Business Research. Vol. 67. No. 8. Pp. 1688–1699.
[1] Filieri, R., & Mariani, M. (2021). The role of cultural values in consumers' evaluation of online review helpfulness: A big data approach. International Marketing Review. Vol. 38. No. 6. Pp. 1267–1288
[1] Chiang, W. Y. K., Zhang, D., & Zhou, L. (2006). Predicting and explaining patronage behavior toward web and traditional stores using neural networks: A comparative analysis with logistic regression. Decision Support Systems. Vol. 41. No. 2. Pp. 514–531
[1] Guo, Y., Wang, M., & Li, X. (2017). Application of an improved Apriori algorithm in a mobile e‐commerce recommendation system. Industrial Management & Data Systems. Vol. 117. No. 2. Pp. 287–303
[1] Nexus Integra. (2019). Advantages and disadvantages of artificial intelligence. in: https://nexusi ntegra.io/advantages-disadvantages-artificial-intelligence.
[1] J. Hall. (2019). How Artificial Intelligence is Transforming Digital Marketing, in: https://www.for bes.com/sites/forbesagencycouncil/2019/08/21/how-artificial-intelligence-is-transforming
[1] Verma, S. Sharma, R. Deb, S. & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. Int. J. Inf. Manag. Vol. 1. 100002
[1] Data Ethics. (2019). Danish Companies Behind Seal for Digital Responsibility, in: https://dataet hics.eu/danish-companies-behind-seal-for-digital-responsibility
[1] M. Alemany Oliver & J. Vayre. (2015). Big data and the future of knowledge production in marketing research: ethics, digital traces, and abductive reasoning. J. Market Anal. Vol. 3. Pp. 5–13
[1] Y. Bathaee, (2018). The artificial intelligence black box and the failure of intent and causation. Harvard J. Law Technol. Vol. 31. Pp. 889
[1] Davis, F. D. Bagozzi, R. P. & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science. Vol. 35. No. 8. Pp. 982 - 1003
- Altawil, L. (2011). namudhaj qabul altiknulujia waikhtibarih ealaa aistikhdam nazam almaelumat almuhasabiati: dirasatan tajribiatan ealaa eayinat min almustakhdimin fi sharikat alnasij fi suria. bahath manshur. majalat jamieat tishrin lilbuhuth waldirasat aleilmiati. silsilat aleulum alaiqtisadiat walqanuniati. 1(2).
- Alfarih, S. (2014). aistikhdam namudhaj qabul altiknulujia (tamu) litaqasiy faeiliat tatbiq nizam li'iidarat altaelim fi altadris aljamiei. majalat aleulum altarbawiat walnafsiati. 1(2).
[1] Venkatesh, Viswanath & Davis, Fred. )2000(. A Theoretical extension of the Technology Acceptance model: four Longitudinal Field Studies. Management science. Vol 46, No 2, pp 186-204
- 'Ismaeel, M. (1996). manahij albahth fi 'iielam altifla. Alqahirata: dar alnashr liljamieati. ta1.
- Gharib, M. (2019). manahij albahth al'iielamii- al'usus tanzariat waltatbiqiati- Alqahira. Aldaar Almisriat allubnaniati. ta1.
[1] Mitchell, T., R. M. Keller, and S. T. Kedar-Cabelli. (1986) Explanation-Based Learning: A Unifying View. Machine Learning. vol. 1, No. 1. pp. 47-80.